University of Groningen

Instructions

- 1. The use of calculators, books, or notes is not allowed.
- 2. Provide clear arguments for all your answers: only answering "yes", "no", or "42" is not sufficient. You may use all theorems and statements in the book, but you should clearly indicate which of them you are using.
- 3. The total score for all questions equals 90. If p is the number of marks then the exam grade is G = 1 + p/10.

Problem 1 (4 + 6 points)

- (a) State the Archimedean Property of \mathbb{R} .
- (b) Use the Archimedean Property to prove that $\sup\left\{\frac{n-1}{n} : n \in \mathbb{N}\right\} = 1.$

Problem 2 (4 + 4 + 4 + 4 + 4 + 4)

- (a) Let $\alpha > -1$. Prove by induction that $(1 + \alpha)^n \ge 1 + n\alpha$ for all $n \in \mathbb{N}$.
- (b) Let $y_n = \left(1 + \frac{1}{n}\right)^{n+1}$. Show that

$$\frac{y_{n-1}}{y_n} = \left(1 + \frac{1}{n^2 - 1}\right)^n \cdot \frac{n}{n+1} \quad \text{for all } n \ge 2.$$

- (c) Use part (a) and (b) to prove that $y_{n-1} > y_n$ for all $n \ge 2$. Hint: α is allowed to depend on n.
- (d) Prove that $\lim y_n$ exists.

(e) Let
$$x_n = \left(1 + \frac{1}{n}\right)^n$$
. Prove that $\lim x_n = \lim y_n$.

Problem 3 (15 points)

Let $A \subset \mathbb{R}$ be nonempty and both open and closed. Prove that A is unbounded.

Problem 4 (10 + 5 points)

Let $f : \mathbb{R} \to \mathbb{R}$ be continuous and periodic with period T > 0:

$$f(x+T) = f(x)$$
 for all $x \in \mathbb{R}$.

- (a) Prove that f is uniformly continuous on \mathbb{R} . Hint: first consider $f:[0,2T] \to \mathbb{R}$.
- (b) Assume in addition that f is differentiable. Prove that f'(x) = 0 for infinitely many points $x \in \mathbb{R}$.

Problem 5 (6 + 9 points)

Let $f : \mathbb{R} \to \mathbb{R}$ satisfy $f(x) \ge 1$ for all $x \in \mathbb{R}$. Define the sequence

$$f_n(x) = \frac{nf(x)}{1 + nf(x)}.$$

- (a) Compute the pointwise limit of (f_n) .
- (b) Does (f_n) converge uniformly on \mathbb{R} ?

Problem 6 (6 + 9 points)

Define $h: [0,2] \to \mathbb{R}$ as

$$h(x) = \begin{cases} 1 & \text{if } x \neq 1 \\ 0 & \text{if } x = 1 \end{cases}$$

- (a) Prove that h is integrable on [0, 2].
- (b) Let $H(x) = \int_0^x h(t)dt$ for all $x \in [0, 2]$. Compute H'(1).

Solution of Problem 1 (4 + 6 points)

- (a) Archimedean Property:
 - (i) For all $x \in \mathbb{R}$ there exists $n \in \mathbb{N}$ such that n > x. (2 points)
 - (ii) For all y > 0 there exists n ∈ N such that 1/n < y.
 (2 points)
- (b) Clearly, (n-1)/n < 1 for all $n \in \mathbb{N}$, which implies that s = 1 is an upper bound for the given set.

(3 points)

Let $\epsilon > 0$ be arbitrary. By the Archimedean Property there exists $n \in \mathbb{N}$ such that $1/n < \epsilon$. Therefore,

$$\frac{n-1}{n} = 1 - \frac{1}{n} > 1 - \epsilon = s - \epsilon.$$

This shows that $s - \epsilon$ is *not* an upper bound for the given set, and hence we conclude that s = 1 is the *least* upper bound. (3 points)

Solution of Problem 2 (4 + 4 + 4 + 4 + 4 + 4)

(a) For n = 1 the inequality reads as 1 + α ≥ 1 + α, which is indeed true.
(1 point)

Now assume that $(1 + \alpha)^n \ge 1 + n\alpha$ for some $n \in \mathbb{N}$, then

$$(1+\alpha)^{n+1} = (1+\alpha)^n (1+\alpha)$$

$$\geq (1+n\alpha)(1+\alpha)$$

$$= 1+(n+1)\alpha + n\alpha^2$$

$$\geq 1+(n+1)\alpha,$$

which shows that the inequality holds for n + 1 as well. By induction, the inequality holds for all $n \in \mathbb{N}$.

(3 points)

(b) Straightforward computations show that

$$\frac{y_{n-1}}{y_n} = \frac{\left(\frac{n}{n-1}\right)^n}{\left(\frac{n+1}{n}\right)^n \left(\frac{n+1}{n}\right)} = \left(\frac{n^2}{n^2-1}\right)^n \cdot \frac{n}{n+1} = \left(1 + \frac{1}{n^2-1}\right)^n \cdot \frac{n}{n+1}.$$

(4 points)

(c) Applying part (a) with $\alpha = 1/(n^2 - 1)$ to the result of part (b) gives

$$\frac{y_{n-1}}{y_n} \ge \left(1 + \frac{n}{n^2 - 1}\right) \cdot \frac{n}{n+1} > \left(1 + \frac{1}{n}\right) \cdot \frac{n}{n+1} = 1 \quad \Rightarrow \quad y_{n-1} > y_n.$$

(4 points)

(d) From part (c) it follows that (y_n) is a decreasing sequence. Also observe that $y_n > 0$ for all $n \in \mathbb{N}$.

(2 points)

The Monotone Convergence Theorem states that a decreasing sequence that is bounded below converges. We conclude that $y = \lim y_n$ exists. (2 points)

(e) Note that

$$x_n = y_n \cdot \frac{n}{n+1}$$
 for all $n \in \mathbb{N}$.

Hence, by the Algebraic Limit Theorem it follows that

$$\lim x_n = \lim y_n \cdot \lim \frac{n}{n+1} = \lim y_n.$$

(4 points)

Solution of Problem 3 (15 points)

This problem has two solutions, which, in fact, are quite similar.

Solution 1. Assume that A is bounded, then $s = \sup A$ exists. Now we need to force a contradiction.

(4 points)

Note that $s \in \overline{A}$ (the closure of A). Since A is closed we have $A = \overline{A}$ and therefore it follows that $s \in A$.

(4 points)

Since A is open there exists $\delta > 0$ such that $V_{\delta}(s) \subset A$. Therefore there exists $x \in A$ with x > s. (For example take $x = s + \frac{1}{2}\delta$.)

(4 points)

But as $s = \sup A$ it follows that $x \leq s$ for all $x \in A$. This gives a contradiction, and we conclude that A is unbounded.

(3 points)

Remark: one can give a similar proof using the infimum.

Solution 2. Assume that A is bounded, then A is compact since it was already assumed that A is closed.

(4 points)

The function f(x) = x is continuous on A. By compactness of A the function f attains a maximum on A, i.e., there exists a point $x_0 \in A$ such that $f(x_0) \ge f(x)$ for all $x \in A$. (4 points)

Since A is open there exists $\delta > 0$ such that $V_{\delta}(x_0) \subset A$. Therefore, there exists $x_1 \in A$ with $x_1 > x_0$ so that $f(x_1) > f(x_0)$.

(4 points)

This contradicts the fact that f attains its maximum in x_0 . Hence, we conclude that A must be unbounded.

(3 points)

Remark: one can give a similar proof using the minimum of f.

Solution of Problem 4 (10 + 5 points)

(a) The interval [0, 2T] is closed and bounded and therefore compact. Since the function f is continuous it is uniformly continuous on [0, 2T].
(2 points)

(2 points)

For all $\epsilon > 0$ there exists $\delta > 0$ such that

$$|x - y| < \delta \quad \Rightarrow \quad |f(x) - f(y)| < \epsilon \quad \text{for all } x, y \in [0, 2T].$$

(2 points)

Assume that $\delta < T$ (otherwise we just make δ smaller). Now let $x, y \in \mathbb{R}$ satisfy $|x - y| < \delta$. There exists $k \in \mathbb{Z}$ such that

$$x + kT, y + kT \in [0, 2T].$$

(2 points)

Using the fact that f is T-periodic gives

$$\begin{aligned} |x - y| < \delta & \Rightarrow \quad |(x + kT) - (y + kT)| < \delta \\ & \Rightarrow \quad |f(x + kT) - f(y + kT)| < \epsilon \\ & \Rightarrow \quad |f(x) - f(y)| < \epsilon \end{aligned}$$

which proves that f is uniformly continuous on \mathbb{R} . (4 points)

(b) Let $k \in \mathbb{Z}$ be arbitrary. Note that f(kT) = f((k+1)T) by the fact that f is T-periodic. Since f is continuous on [kT, (k+1)T] and differentiable on (kT, (k+1)T) Rolle's Theorem implies that there exists a point $c_k \in (kT, (k+1)T)$ such that $f'(c_k) = 0$. Hence, f'(x) = 0 for infinitely many points $x \in \mathbb{R}$. (5 points)

Solution of Problem 5 (6 + 9 points)

(a) Let $x_0 \in \mathbb{R}$ be arbitrary, then by the Algebraic Limit Theorem it follows that

$$\lim f_n(x_0) = \lim \frac{nf(x_0)}{1 + nf(x_0)} = \lim \frac{f(x_0)}{f(x_0) + 1/n} = \frac{f(x_0)}{f(x_0) + \lim(1/n)} = \frac{f(x_0)}{f(x_0)} = 1.$$

We conclude that (f_n) converges pointwise to the constant function f(x) = 1. (6 points)

(b) Since $f(x) \ge 1$ for all $x \in \mathbb{R}$ it follows that

$$|f_n(x) - 1| = \frac{1}{1 + nf(x)} \le \frac{1}{1 + n}$$
 for all $x \in \mathbb{R}$.

(4 points)

Therefore, it follows that

$$\sup_{x \in \mathbb{R}} |f_n(x) - 1| \le \frac{1}{1+n} \quad \text{so that} \quad \lim \left(\sup_{x \in \mathbb{R}} |f_n(x) - 1| \right) = 0.$$

We conclude that (f_n) converges to f(x) = 1 uniformly on \mathbb{R} . (5 points)

Solution of Problem 6 (6 + 9 points)

(a) Let $\epsilon > 0$ be arbitrary and take the partition

$$P_{\epsilon} = \{0, 1 - \frac{1}{4}\epsilon, 1 + \frac{1}{4}\epsilon, 2\}.$$

With this partition it easily follows that

$$M_1 = 1$$
, $M_2 = 1$, $M_3 = 1$, $m_1 = 1$, $m_2 = 0$, $m_3 = 1$.

(3 points) Therefore,

$$U(f, P_{\epsilon}) - L(f, P_{\epsilon}) = \sum_{k=1}^{3} (M_k - m_k)(x_k - x_{k-1}) = (M_2 - m_2)(x_2 - x_1) = \frac{1}{2}\epsilon < \epsilon.$$

We conclude that h is integrable on [0, 2]. (3 points)

(b) Define $H(x) = \int_0^x h(t)dt$. This makes sense as we have already shown that h is integrable on [0, 2] and therefore also on each subinterval $[0, x] \subset [0, 2]$. Note that we cannot apply the Fundamental Theorem of Calculus to say that H'(1) = h(1) = 0 since h is not continuous at x = 1!

Define the function

$$g(x) = 1 - h(x) = \begin{cases} 0 & \text{if } x \neq 1\\ 1 & \text{if } x = 1 \end{cases}$$

By using the same partition as in part (a) it follows that

$$U(f, P_{\epsilon}) = \frac{1}{2}\epsilon, \qquad L(f, P_{\epsilon}) = 0.$$

This shows that g is also integrable on [0, 2] and $\int_0^2 g = 0$. (4 points)

In particular, it follows that $\int_0^x g = 0$ for all $x \in [0, 2]$. Therefore,

$$H(x) = \int_0^x h = \int_0^x (h - 1 + 1) = \int_0^x (1 - g) = \int_0^x 1 - \int_0^x g = \int_0^x 1 = x$$

for all $x \in [0, 2]$. (4 points)

Therefore, H'(x) = 1 for all $x \in [0, 2]$. In particular it follows that $H'(1) = 1 \neq 0$. (1 point)